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Abstract
Karasu-Kalkani et al (2008 J. Math. Phys. 49 073516) recently derived a
new sixth-order wave equation KdV6, which was shown by Kupershmidt
(2008 Phys. Lett. 372A 2634) to have an infinite commuting hierarchy with
a common infinite set of conserved densities. Incidentally, this equation was
written for the first time by Calogero and is included in the book by Calogero
and Degasperis (1982 Lecture Notes in Computer Science vol 144 (Amsterdam:
North-Holland) p 516). In this paper, we give a geometric insight into the
KdV6 equation. Using Kirillov’s theory of coadjoint representation of the
Virasoro algebra, we show how to obtain a large class of KdV6-type equations
equivalent to the original equation. Using a semidirect product extension of the

Virasoro algebra, ̂Vir � C∞(S1), we propose the nonholonomic deformation of
the Ito equation. We also show that the Adler–Kostant–Symes scheme provides
a geometrical method for constructing nonholonomic deformed integrable
systems. Applying the Adler–Kostant–Symes scheme to loop algebra, we
construct a new nonholonomic deformation of the coupled KdV equation.

Dedicated to Professor N Mukunda on his 70th birthday

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv
Mathematics Subject Classification: 35Q53, 37K10

1. Introduction

Recently, Karasu-Kalkani et al [12] applied the Painlevé test to the class of sixth-order
nonlinear wave equations and found that three of these were previously known, but the fourth
one turned out to be a new one:(

∂2
x + 8ux∂x + 4uxx

)(
ut + uxxx + 6u2

x

) = 0. (1)
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One immediately recognizes the potential form of the KdV equation in the second factor
of the left-hand side of (1). The factored way of writing the KdV6 equation has the advantage
of the fact that all solutions of (potential) KdV are also solutions of KdV6. It is important to
note that equation (1) was written for the first time by Calogero and is contained in the book
by Calogero and Degasperis [5]. As such, it shares many of the properties of the equations
associated with the Schrödinger spectral problem discussed there.

After a slight change of variables v = ux,w = ut + uxxx + 6u2
x , equation (1) boils down

to

vt + vxxx + 12vvx − wx = 0, wxxx + 8vwx + 4wvx = 0. (2)

The authors of [12] obtained the Lax pair and an auto-Bäcklund transformation for
(2). They claimed that (2) is different from the KdV equation with self-consistent sources
(KdVESCS) and posed an open question to find higher symmetries and asked if higher
conserved densities and a Hamiltonian formalism exist for (2). In a recent paper, Ramani et al
[17] bilinearized the KdV6 equation and derived a new, simpler, auto-Bäcklund transformation;
starting from the solutions to the KdV equation, we construct solutions to KdV6 in the form
of M kinks and N poles which indeed involve an arbitrary function of time.

In an interesting paper, Kupershmidt [14] described this as a nonholonomic deformation
of the KdV equation. By rescaling v and t, he further modified this to

ut − 6uux − uxxx + wx = 0, wxxx + 4uwx + 2uxw = 0. (3)

This can be converted into a bi-Hamiltonian form:

ut = B1

(
δHn+1

δu

)
− B1(w) = B2

(
δHn

δu

)
− B1(w), B2(w) = 0, (4)

where

B1 = ∂ = ∂x, B2 = ∂3 + 2(u∂ + ∂u) (5)

are the two standard Hamiltonian operators of the KdV hierarchy, n = 2, and

H1 = u, H2 = u2/2, H3 = u3/3 − u2
x

/
2, ... (6)

are the conserved densities.
The soliton equations with self-consistent sources have many physical applications; for

example, they describe the interaction of long and short capillary-gravity waves. In a recent
paper, Yao and Zeng [21] showed that the KdV6 equation is equivalent to the Rosochatius
deformation of the KdV equation with self-consistent sources. In this paper, we extend the
Yao and Zeng result to construct many other equations equivalent to the KdV6 equation. We
identify the fact that the constraint equation of w is a stabilizer equation of the Virasoro orbit.
We tacitly replace this equation with an equivalent partner equation to obtain a new avatar of
the KdV6 equation. Essentially, Yao and Zeng adopted this philosophy in an ad hoc style. We
put it in a more systematic form using Kirillov’s coadjoint orbit method. Our next task is to

extend Kupershmidt’s formalism to extended the Virasoro algebra ̂Vir � C∞(S1) to construct
the Ito6 equation. It is known [8, 9] that a wide class of coupled KdV equations can be
manifested as geodesic flows of the right invariant L2 metric on the semidirect product group

̂Diff(S1) � C∞(S1), where Diff(S1) is the group of orientation-preserving diffeomorphisms
on a circle. We construct nonholonomic deformation of the Ito system from the coadjoint
representation of the extended Virasoro algebra [8, 9].

In the second part of the paper, we give a construction of the KdV6 equation using loop
algebra. It is well known that a systematic procedure of obtaining the most finite-dimensional
completely integrable systems is obtained from the Adler, Kostant and Symes (AKS) theorem
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[1, 2, 20] applying to some Lie algebra g equipped with an ad-invariant non-degenerate bilinear
form. The AKS method provides us with a Poisson manifold and a hierarchy of commuting
Hamiltonians. When one applies this scheme to Lie algebras, one obtains discrete integrable
systems, for example the open Toda lattice system. However, the most interesting examples
are related to infinite-dimensional Lie algebras or loop algebras as shown by Reyman and
Semenov-Tian-Sanskii [18, 19]. In this paper, we apply the Adler–Kostant–Symes scheme to
loop algebra to give a nonholonomic deformation of the coupled complex KdV equation using
the Fordy–Kulish decomposition [6, 7, 16].

The plan of the paper is as follows. We give a preliminary description of the Virasoro
algebra and its association with the KdV6 equation in section 2. In section 3, we give various
equivalent representations of the KdV6 equation. Section 4 is devoted to the construction
of the nonholonomic deformation of the Ito equation, dubbed the Ito6 equation. Using the
current algebra method, we derive the nonholonomic deformation of the coupled complex
KdV equation. In section 6, we give a brief outlook of the paper.

2. Virasoro algebra and nonholonomic deformation of the KdV equation

Let us consider the Lie algebra of vector fields Vect(S1) on a circle S1. The dual of this
algebra is identified with the space of quadratic differential forms F2. The pairing between
f (x) d

dx
∈ Vect(S1) and u(x) dx⊗2 ∈ F2 is defined as〈

u(x) dx2, f (x)
d

dx

〉
=
∫ 2π

0
u(x)f (x) dx.

The Virasoro algebra Vir has a unique non-trivial central extension (see, for example,
[13]) by means of R:

0 −→ R −→ Vir −→ Vect(S1)

described by the Gelfand–Fuchs cocycle

ω1(f, g) =
∫

S1
f ′g′′ dx.

The elements of Vir can be identified with the pairs (2π periodic function, real number).
The commutator in Vir takes the form[(

f (x)
d

dx
, a

)
,

(
g(x)

d

dx
, b

)]
=
(

(fg′ − gf ′)
d

dx
,

∫
S1

f ′g′′ dx

)
.

The dual space Vir∗ can be identified with the set {(μ, u dx2)|μ ∈ R}.
A pairing between a point

(
λ, f (x) d

dx

) ∈ Vir and a point (μ, u dx2) ∈ Vir∗ is given by〈
(μ, u(x) dx2),

(
λ, f (x)

d

dx

)〉
= λμ +

∫
S1

f (x)u(x) dx.

Lemma 2.1. The coadjoint action of the Virasoro algebra
(
λ, f (x) d

dx

) ∈ Vir on its dual
(μ, u dx2) ∈ Vir∗ is given by

ad∗
(λ,f (x) d

dx
)
(μ, u dx2) = μf ′′′ + 2f ′u + f u′. (7)

Proof. It follows from the definition〈
ad∗

(λ,f )(μ, u), (ν, g)
〉 = 〈(μ, u), ad(λ,f )(ν, g)〉 =

〈
(μ, u),

(∫
S1

f ′g′′ dx,

[
f

d

dx
, g

d

dx

])〉
.

=
∫

S1
u(fg′ − f ′g) dx + μ

∫
S1

f ′g′′.

From this expression, we obtain (7). �
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We fix the hyperplane μ = 1
2 . The kernel of ad∗ yields the stabilizer set of the Virasoro

orbit. It plays a very important role in the definition of the KdV6 equation. Incidentally, the
dual space of the Virasoro algebra can also be identified with the space of Hill’s operators.

Corollary 2.2. The stabilizer space of the coadjoint action of
(
λ, f d

dx

) ∈ Vir on the hyperplane(
μ = 1

2

)
of the space of Hill’s operator (or quadratic differentials) is given by

f ′′′ + 4u′f + 4uf ′ = 0 (8)

or

ff ′′ + 2uf 2 − 1

2
(f ′)2 = c, (9)

where c is a constant.

The second Hamiltonian operator of the KdV equation can be easily derived from the
coadjoint action (7), given by

O2
KdV = D3 + 4uD + 2ux, where D = d

dx
. (10)

It is known that the first Hamiltonian operator of the KdV equation can also be derived (see
below for the derivation of this operator for the Ito system) from the coadjoint action using
the frozen Lie–Poisson structure. It is given by O1

KdV = D.

Proposition 2.3. The KdV6 equation is the constraint Hamiltonian flow on the Virasoro orbit:

ut = ad∗
∇H (u) − wx = O2

KdV
δH

δu
− O1

KdV(w) s. t. 〈∇H,wx〉 = 0 (11)

and

O2
KdV(w) = 0, (12)

where H = 1
2

∫
S1 u2 dx.

This definition is closely related to the Euler–Poincaré–Suslov (EPS) formalism [3, 11]. In
fact, this is one of the best demonstrations of the EPS formalism in integrable systems. Given
a set of linearly independent vectors ai , this nonholonomic flow equation can be expressed in
canonical coordinates x = (p, q):

ẋ = [x,∇H(x)] +
p∑

i=1

λia
i,

such that

〈∇H(x), ai〉 = 0, i = 1, . . . , p.

Our next task is to find w such that it satisfies 〈∇H,wx〉 = 0. The workable approach to
this problem is to choose Kupershmidt’s scheme, i.e.

w = δG

δu
, (13)

for some function G. This immediately leads to

〈∇H,wx〉 =
〈
δH

δu
, ∂

(
δG

δu

)〉
= {H,G}1 = 0.

Since O2w = 0, hence

{H,G}2 = 0.

Thus, G commutes with H with respect to both the Poisson structures. It is easy to generalize
this construction to the sequence of Hamiltonians Hn. Thus, G commutes with Hn w.r.t. to
both the brackets, i.e.

{Hn,G}1 = 0 = {Hn,G}2. (14)

4
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3. Various equivalent forms of the KdV6 equation

In this section, we study various equivalent forms of the nonholonomic deformation of the
KdV equation. It is known that the KdV6 equation always appears as a pair of equations (3),
an evolution equation of u and a constraint equation of w. In principle, the second equation of
(3), i.e. w equation, can always be written in various equivalent forms and the first equation
must be replaced by new ‘w’. We illustrate this formalism by examples below. Let us
start with an example discussed by Yao and Zeng [21], where the w equation is replaced by
Ermakov–Pinney-type systems.

3.1. Ermakov–Pinney-type systems

The classical Pinney equation may be regarded as the simplest specialization of a pair of
coupled second-order ordinary differential equations, now known as Ermakov systems. The
Ermakov systems usually belong to a general class of equations of the form

p′′
i + upi = gi(p1, . . . , pn), i = 1, . . . , n,

where gi are homogeneous functions of weight −3 and u = u(x, p1, . . . , pn, p
′
1, . . . , p

′
n).

The simplest Ermakov system reads as

ψ ′′ + u(x)ψ = σ

ψ3
. (15)

We need some properties of the w (or stabilizer) equation to understand this change. We
start with an important property of the w equation. Its solution can be manufactured from
Hill’s equation.

It is straightforward to see that if ψ1 and ψ2 are the solutions of Hill’s equation


ψ =
(

d2

dx2
+ u

)
ψ = 0, (16)

then the product w = ψiψj satisfying the constraint (stabilizer) equation w′′′+2u′w+4uw′ = 0
traces out a three-dimensional space of solution.

Since the solution of the constraint equation is spanned by ψiψj , i.e.

Span
(
ψ2

1 , ψ2
2 , ψ1ψ2

)
,

naturally, an arbitrary solution of w is given by

� = Aψ2
1 + 2Bψ1ψ2 + Cψ2

2 , (17)

an arbitrary linear combination of basis vectors. This is periodic and hence a global solution
of the constraint equation. We skip the geometric meaning of � in this paper; the interested
reader can refer to [10]. The square root of � is connected to the solution of the Ermakov
equation. We state this result below.

Proposition 2. If ψ1 and ψ2 satisfy Hill’s equation, then

ψ =
√

Aψ2
1 + 2Bψ1ψ2 + Cψ2

2 (18)

satisfies the Ermakov equation

ψ ′′ + u(x)ψ = σ

ψ3
, σ = AC − B2

and
{
ψ2

1 , ψ2
2 , ψ1ψ2

}
satisfy the stabilizer or constraint equation w′′′ + 4uw′ + 2u′w = 0.

5
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This proof follows from direct calculation. This proposition allows us to state that if we
set w = ψ2, then the constraint equation is the Ermakov equation. Essentially, this is the
important observation of Yao and Zeng [21].

We can associate another interesting equation with the w equation, which is closely related
to the Ermakov–Pinney equation. This is known as the Kummer–Schwarz equation:

1

2

w′′

w
− 3

4

(
w′

w

)2

+ σw2 = u(x).

The solution of this equation is given by

w(x) = (
Aψ2

1 + 2Bψ1ψ2 + Cψ2
2

)−1
, (19)

where ψ1 and ψ2 satisfy Hill’s equation.
Thus by establishing the connection between the solutions of the w equation and the

Ermakov–Pinney equation, we replace the old set of KdV6 pair with a new set of KdV6 pair.
This is an equivalent representation of the KdV6 equation. We give another example below
in the spirit of Yao and Zeng [21].

3.2. Second-order Riccati equation

The objective of this section is to present another version of the KdV6 equation. Here, the w

equation is replaced by the second-order Riccati equation.
Let L be the following differential operator:

L = d

dx
+ v(x).

The nth-order equation of the Riccati chain is given by the following formula:

Lnv(x) +
n−1∑
j=1

αj (x)(Lj−1v(x)) + α0(x) = 0, (20)

where n is an integer characterizing the order of the Riccati equation in the chain and
αj (x), j = 0, 1, . . . , n, are arbitrary functions. In particular, the second-order Riccati equation
(SORE) is given by

n = 2, vxx + 3v(x)vx + v3(x) + α1(x)v(x) + α0(x) = 0. (21)

Now we wish to establish a connection between the w (or stabilizer) equation and SORE.
Suppose that

v = wx

w
; (22)

then we obtain
wxxx

w
= vxx + 3vvx + v3.

After substituting this into wxxx + 4uwx + 2uxw = 0, we find

vxx + 3vvx + v3 + 4uv + 2ux = 0, (23)

which is a particular case of the second-order Riccati equation. It is now clear that the w

equation is replaced by (23).
There are some interesting properties of (23). In fact, the solution of the second-order

Riccati equation can be obtained from the ordinary Riccati equation. Let us seek to find the
relation between the solutions of the ordinary Riccati equation and the second-order Riccati
equation (23).

6
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Proposition 3.2.

(i) The projective vector field equation is equivalent to a particular form of the second-order
Riccati equation vxx + 3vvx + v3 + 4uv + 2ux = 0, where v = fx/f .

(ii) Suppose that v(x) = v1 is the solution of the Riccati equation vx + v2 + u = 0. Then the
second-order Riccati equation satisfies v(x) = 2v1.

Proof. By direct computation, one can check this result. �

Thus, we see that the w equation can be replaced by the second-order Riccati equation.
In this way, we can obtain several equivalent representations of the KdV6 equation. We list
them systematically.

Equivalent representation of the KdV6 equation
The KdV6 equation is equivalent to the following sets of equations.

(i) Let ψ1 and ψ2 be the solutions of Hill’s equation. Then the solution of the constraint
equation is w = ψiψj . When we replace the constraint equation of w by Hill’s equation,
then KdV6 is given by

ut = uxxx + 6uux − (ψiψj )x, ψxx + uψ = 0. (24)

(ii) If the constraint equation is replaced by the second-order Riccati equation, then the KdV6
equation becomes

ut = uxxx + 6uux − (e
∫ x

v dx ′
)x, vxx + +3vvx + v3 + 4uvx + 2uxv = 0, (25)

where v = wx/w.
(iii) If the constraint equation is the Ermakov equation, then the new KdV6 equation is

ut = uxxx + 6uux − (ψ2)x, ψxx + uψ = σ

ψ3
, (26)

where w = ψ2 and ψ satisfy equation (18).

4. Generalizing KdV6 to the Ito6 equation

We now generalize the KdV6 equation to the multi-component KdV6 equation. We use a
semidirect product extension of the Virasoro algebra [8, 9] to construct the Ito6-type system.
Let us give a quick introduction to the semidirect extension of the Bott–Virasoro group and
the corresponding Virasoro algebra.

The Lie algebra of Diff(S1) � C∞(S1) is the semidirect product Lie algebra:

G = Vect(S1) � C∞(S1).

An element of G is a pair
(
f (x) d

dx
, a(x)

)
, where f (x) d

dx
∈ Vect(S1) and a(x) ∈ C∞(S1).

It is known that this algebra has a three-dimensional central extension given by the
non-trivial cocycles

ω1

((
f

d

dx
, a

)
,

(
g

d

dx
, b

))
=
∫

S1
f ′(x)g′′(x) dx (27)

ω2

((
f

d

dx
, a

)
,

(
g

d

dx
, b

))
=
∫

S1
f ′′(x)b(x) − g′′a(x)) dx (28)

ω3

((
f

d

dx
, a

)
,

(
g

d

dx
, b

))
= 2

∫
S1

a(x)b′(x) dx. (29)

7



J. Phys. A: Math. Theor. 42 (2009) 345201 P Guha

We consider an extension of G. This extended algebra is given by

Ĝ = Vect(S1) � C∞(S1) ⊕ R3. (30)

Definition 4.1. The commutation relation in Ĝ is given by[(
f

d

dx
, a, α

)
,

(
g

d

dx
, b, β

)]
:=

(
(fg′ − f ′g)

d

dx
, f b′ − ga′, ω

)
, (31)

where α = (α1, α2, α3), β = (β1, β2, β3), ω ∈ R3 = (ω1, ω2, ω3) are the 2-cocycles.

The dual space of smooth functions C∞(S1) is the space of distributions (generalized
functions) on S1. Of particular interest are the orbits in Ĝ∗

reg. In the case of the current group,
Gelfand, Vershik and Graev have constructed some of the corresponding representations.

Definition 4.2. The regular part of the dual space Ĝ∗ to the Lie algebra Ĝ is as follows.
Consider

Ĝ∗
reg = C∞(S1) ⊕ C∞(S1) ⊕ R3

and fix the pairing between this space and Ĝ, 〈·, ·〉 : Ĝ∗
reg ⊗ Ĝ → R:

〈û, f̂ 〉 =
∫

S1
f (x)u(x) dx +

∫
S1

a(x)v(x) dx + α · γ, (32)

where û = (u(x), v, γ ), f̂ = (
f d

dx
, a, α

)
.

The three following elements

f̂ =
(

f
d

dx
, a, α

)
, ĝ =

(
g

d

dx
, b, β

)
, û =

(
u

d

dx
, v, c

)
are given in Ĝ.

Lemma 4.3.

ad∗
f̂
û =

⎛⎝(2f ′(x)u(x) + f (x)u′(x) + a′v(x) − c1f
′′′ + c2a

′′

f ′v(x) + f (x)v′(x) − c2f
′′(x) + 2c3a

′(x)

0

⎞⎠ .

Proof. This follows from〈
ad∗

f̂
û, ĝ

〉
L2 = 〈û, [f̂ , ĝ]〉L2

=
〈(

u(x)
d

dx
, v(x), c

)
,

[
(fg′ − f ′g)

d

dx
, f b′ − ga′, ω

]〉
L2

= −
∫

S1
(fg′ − f ′g)u(x) dx −

∫
S1

(f b′ − ga′)v dx − c1

∫
S1

f ′(x)g′′(x) dx

− c2

∫
S1

(f ′′(x)b(x) − g′′(x)a(x)) dx − 2c3

∫
S1

a(x)b′(x) dx.

Since f, g, u are periodic functions, hence integrating by parts we obtain

rhs = 〈2f ′(x)u(x) + f (x)u′(x) + a′(x)v(x) − c1f
′′′(x)

+ c2a
′′(x),f ′(x)v(x) + f (x)v′(x) − c2f

′′b(x) + 2c3a
′(x),0〉. �

Consider the following ‘modified ‘Gelfand–Fuchs’ cocycle on Vect(S1):

ωmGF

(
f (x)

d

dx
, g(x)

d

dx

)
=
∫

S1
(af ′g′′ + bf ′g) dx. (33)

8
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This cocycle is cohomologous to the Gelfand–Fuchs cocycle; hence, the corresponding
central extension is isomorphic to the Virasoro algebra. The additional term in (33) is a
coboundary term. It is easy to check that the functional∫

S1
f ′g dx = 1

2

∫
S1

(f ′g − fg′) dx

depends on the commutator of f d
dx

and g d
dx

.
Taking the modified Gelfand–Fuchs cocycle into account, the Hamiltonian structure

associated with the (modified) coadjoint action yields

O =
(

−c1D
3 + 2uD + ux + c4D vD + c2D

2

vx + vD − c2D
2 2c3D

)
. (34)

4.1. Ito6 equation

In this section, we derive one of the main results of the paper, i.e. the nonholonomic deformation
of the Ito system, dubbed as the Ito6 equation. This can be considered as a multi-component
generalization of the KdV6 equation.

The Hamiltonian structures of the well-known Ito system

ut = uxxx + 6uux + 2vvx

vt = 2(uv)x

are given by

O2
Ito =

(
D3 + 4uD + 2ux 2vD

2vx + 2vD 0

)
(35)

and

O1
Ito =

(
D 0

0 D

)
. (36)

These two Hamiltonian structures can be easily derived from equation (34). Let us

choose the hyperplane in the dual space
(

̂Vect(S1) � C∞(S1)
)∗

. The coadjoint action leaves
the parameter space invariant. When we consider a hyperplane c1 = −1, c2 = c3 = c4 = 0,
we obtain the second Hamiltonian structure and for c1 = c2 = 0, c3 = 1

2 , c4 = 1 we obtain
the first Hamiltonian structure.

Proposition 4.4. The Ito6 equation is a constraint flow on the dual space of the semidirect
algebra Ĝ restricted to hyperplane c1 = −1, c2 = c3 = c4 = 0:

ut = uxxx + 6uux + 2vvx − w1x (37)

vt = 2(uv)x − w2x, (38)

where w = (
w1
w2

)
satisfies

w1xxx + 6uw1x + vw2x + w2xx = 0 (39)

−w2xx + (w1v)x = 0. (40)

9
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Proof. We use the Euler–Poincaré–Suslov-type equation(
u

v

)
= O2

Ito

(
δH
δu

δH
δv

)
− O2

Ito

(
w1

w2

)
and constraint equation

O2
Ito

(
w1

w2

)
= 0

to produce our result. �

Following Kupershmidt, we can show the existence of an infinite number of conserved
densities:
dHm

dt
= ∇Hm(u)

[
O2

Ito

(∇Hn(u) − O1
Ito(w)

)] = ∇Hm(u)O2
Ito(∇Hnu) − ∇Hn

(
O1

Ito

)
w = 0,

where all the operations are defined up to exact differential and

∇Hm(u) =
(

δHm

δu

δHm

δv

)
.

5. Loop algebra and nonholonomic deformation of the coupled KdV equation

The AKS theory produces hierarchies of completely integrable partial (or ordinary) differential
equations. This scheme is in quite a general framework and based on the following ingredients.

(a) A Lie algebra g, with a non-degenerate bilinear form 〈., 〉, allows us to identify g with
its dual g∗. The Lie algebra g splits g = g+ ⊕ g− into two subalgebras g+ and g−. The
bilinear form is used to identify g−∗ with g+⊥.

(b) The phase space is an ad∗-invariant finite-dimensional submanifold � ⊂ g−∗ ≡ g+⊥.
The Poisson structure on � is the Kostant–Kirillov structure associated with g−∗.

(c) The complete set of commutating constants of motion will be elements of the algebra
A(�) of ad-invariant functions on g∗ restricted to �.

5.1. Application to the loop group

Let us apply this scheme to the loop group. Let �G be the space of the based loop; then the
corresponding Lie algebra is called the loop algebra of the semi-infinite formal Laurent series
in the variable λ with coefficients in g:

�g =
{

X(λ) =
∑

i

xiλ
i; xi ∈ g

}
,

with the Lie bracket

[X(λ), Y (λ)] :=
∑
i,j

[xi, yj ]λi+j , where X(λ) =
∑

xiλ
i, Y (λ) =

∑
yjλ

j .

Here, we can define the projection operator in the following way:

P±X =
{

X if X = ∑
n�0 Xnλ

n

−X if X = ∑
n<0 Xnλ

n
.

We define the bilinear form on �g as

〈X(λ), Y (λ)〉 := Resλ=0 tr(λ−1(X(λ)Y (λ)) = tr(X(λ)Y (λ))0.

10
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There is a natural splitting in the loop algebra, and the two subalgebras of �g are given as

�g+ :=
{

k∑
0

giλ
i : gi ∈ g

}
, �g− :=

{ −1∑
−∞

giλ
i : gi ∈ g

}
.

The above decomposition of �g does not correspond to the global decomposition of the loop
group �G, but we have a dense open subset

�G−�G+ ⊂ �G (41)

consisting of all loops φ that can be factorized in the form

φ = φ−φ+ (42)

with φ− ∈ �−G,φ+ ∈ �+G. We refer to this subset of �G as the big cell.
With the above choice of the inner product, one can easily verify �g−

∗ = �g+
⊥, so that

� can be identified with a submanifold of �g+
⊥:

� := {A(λ) =
n∑
0

an−iλ
i, n fixed }.

The Kostant–Kirillov bracket for �̂g
∗

is given by

{f, g}(μ) = 〈μ, [∇f (μ),∇g(μ)]〉, where μ ∈ �g∗. (43)

The gradient of a function f : g∗ −→ C is the vector field ∇f : g∗ −→ g such that

〈∇f (μ), X(μ)〉 = df (X(μ)) ∀μ ∈ g∗.

But this does not restrict to �g∗
−. In fact, with respect to this bracket, the Hamiltonian

vector fields of elements of A(�) are identically zero; one justifies this by 〈ad∗
Xμ,∇H 〉 =

〈μ, [X,∇H ]〉 = 0 for all X ∈ �g.
Let us consider the Hamiltonian equation with respect to {., .} where H can be expressed

in terms of linear coordinates μr = 〈μ,Xr〉, where Xr form the basis in �g−. Thus, the
Hamiltonian equation becomes

〈μ̇, Xr〉 = {H,μr}(μ) = 〈μ, [(∇H(μ))−, (∇μr(μ))−]〉
�⇒ 〈μ̇, Xr〉 = 〈μ, [(∇H(μ))−, Xr ]〉
�⇒ 〈μ̇, Xr〉 = 〈[(∇H(μ))+, μ], Xr〉;

hence, we obtain

μ̇ = [(∇H(μ))+, μ]. (44)

Thus, we derive the AKS equation without the cocycle term.
Our aim is to extend the loop algebra �g. Let us consider the Grassmannian-like

homogeneous space �G/�G+. The image in �G/�G+ of the complement of the big cell in
�G is a divisor in �G/�G+; it therefore corresponds to a holomorphic line bundle L over
�G/�G+. We denote by �̃G the automorphism group of L. The pullback of L to �̂G is
canonically trivial. Hence, �̃G turns out to be the central extension of �G by C×:

1 −→ C× −→ �̃G −→ �G −→ 1. (45)

Hence, we obtain the central extension corresponding to the Lie algebra:

0 −→ C −→ �̃G −→ �G −→ 0.

11
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We introduce a non-trivial 2-cocycle on �g, known as the Maurer–Cartan cocycle. Then
corresponding to the centrally extended loop group �̂G = �G × C, the Lie algebra is
�̂g = �g ⊕ C. This is a centrally extended loop algebra associated with a 2-cocycle:

ω(X, Y ) =
(

X,
dY

dx

)
=
∫

S1
X′Y dx. (46)

Loop algebra �̂g satisfies the following commutation relation:

[(X, a), (Y, b)] =
(

[X, Y ],
∫

S1
tr(XY ′)

)
,

where (X, a), (Y, b) ∈ �̂g.
In general, the map

κ : �g −→ �̃g ≡ �g ⊕ C (47)

is not a Lie algebra homomorphism; only its restriction to �g+ is a Lie algebra homomorphism,
since the central extension term vanishes identically. Then the corresponding induced map

κ : �G+ −→ �̃G (48)

yields a canonical holomorphic trivialization of the part of the fibration lying over �G+.
We also define the bilinear form on �̂g by

〈(X, a), (Y, b)〉 = ab +
∫

tr(XY ).

Suppose that H is an ad-invariant function on �g∗; then

ad∗(∇H(α), a)(μ, 1) = ((ad∗(∇H(μ))(μ) + (∇H)′, 0).

Theorem 5.1. Let �̃g = �̃g
+ ⊕ �̃g

−
and M ⊂ �̃g

+
be a coadjoint orbit equipped with a

natural weak orbit symplectic structure ω. Let Hi : �̃g −→ C be the set of ad-invariant
functions in I (g∗) restricted to (�̃g

+
)⊥ is an involutive system on the coadjoint orbit. The

Hamiltonian equations of motion on �̃g
∗

generated by the Hamiltonian (ad-invariant function)
have the form

∂μ

∂t
= ∂L

∂x
+ [L,μ], (49)

where L = π+[grad H ].

Our aim is to find integrable systems related to Hermitian symmetric spaces as an
application of the Adler–Kostant–Symes scheme. Our main interest is in CP1 = SU(2)/U(1).
In general, any semisimple Lie algebra can be decomposed to g = t + m such that t is the
maximally commutating subalgebra and m is the complement of t in g. We can identify m
with the tangent space of the homogeneous manifold M = G/T , where G is the Lie group
associated with g and T is the subgroup associated with t. When the decomposition satisfies

[t, t] ⊂ t and [t, m] ⊂ m,

g is called reductive decomposition.
If in addition to these t, m satisfies one extra condition [m,m] ⊂ t , then it is called

the symmetric decomposition of g and the space M = G/T is called the Hermitian
symmetric space. The Killing form of g descends down to give metric on this space.
In the case of the Hermitian symmetric space, there exists an element A ∈ t such that
t = Cg(A) = {s ∈ g; [A, s] = 0}. Let h be the Cartan subalgebra of g; the element A can be

12
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chosen to lie in h. We have m = m+ ⊕ m− given by [A, t] = 0 and [A,X±] = ±X± for all
value X± ∈ m±.

In the following section, we will derive a coupled complex KdV equation and its
nonholonomic deformation counterpart from the AKS scheme applied to homogeneous spaces.
This is also known as the Fordy–Kulish decomposition [6].

5.2. Complex coupled KdV and KdV equations

First, we will study the construction of KdV and coupled complex KdV equations. This
method was applied in [16, 7].

We choose μ = λA + Q. Let us define ∇H = ∑4
j=1 hj (x, t)λj with hj = h

j
m + h

j

k .
Thus from the AKS equation

(λA + Q)t = [Aλ + Q,∇H ] − (∇H)x,

we obtain various coefficients of ∇H by setting all λm equal to zero.
Thus, we obtain the following relations recursively:

h3 = A, h2 = Q, h1 = i

2
Q+

x − i

2
Q−

x − i

2
[Q−,Q+],

and

h0 = T + [S,Q],

where

T = − 1
4Qxx + 1

4 [Q+, [Q−,Q+]] − 1
4 [Q−, [Q−,Q+]]

and

S = 1
4

(
Q+

x + Q−
x

)
+ c(Q+ + Q−).

Therefore, the gradient of Hamiltonian ∇H is given by

∇H = Aλ3 + Qλ2 +
( i

2
Q+

x − i

2
Q−

x − i

2
[Q−,Q+]

)
λ

+

(
−1

4
Qxx +

1

4
[Q+, [Q−,Q+]] − 1

4
[Q−, [Q−,Q+]]

)
+

[
1

4

(
Q+

x + Q−
x

)
+ c(Q+ + Q−),Q

]
.

Finally, equating λ0 we obtain

Tx + [S,Q]x = [Q,T ] + [Q, [S,Q]] + Qt. (50)

Note that this is the zero curvature equation. Let us fix

A =
(

i 0
0 −i

)
and if we choose

Q =
(

0 q†

−q 0

)
, (51)

then we can express these two linear pairs of equations as

∂xψ = −
(

qx
†q − qxq

† qxx
† + 2q†qq†

−qxx − 2qq†q −qqx
† + qxq

†

)
ψ ∂tψ =

(
0 q†

−q 0

)
ψ. (52)

13
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Finally, we obtain the equation

qxxx + 6qx |q|2 + qt = 0, q†
xxx + 6q†

x |q|2 + q
†
t = 0. (53)

This zero curvature equation can be expressed in two linear pairs of equations, namely

ψx =
(

0 q†

−q 0

)
ψ ψt =

(
q
†
xq − qxq

† q
†
xx + 2q†qq†

−q
†
xx − 2q†qq† −q

†
xq + qxq

†

)
ψ.

We can derive the KdV equation from this construction.

Corollary 5.2. Let

Q =
(

0 u

−1 0

)
; (54)

then equation (50) yields the KdV equation

uxxx + 6ux |u + ut = 0. (55)

5.3. Nonholonomic deformation of KdV and coupled KdV equations via loop algebra

Let us now add terms

∇H1 = (B2λ
−2 + B1λ

−1) (56)

to the gradient of Hamiltonian ∇H . Then the gradient of the modified Hamiltonian ∇H̃ is
given by

∇H̃ = Aλ3 + Qλ2 +
( i

2
Q+

x − i

2
Q−

x − i

2
[Q−,Q+]

)
λ + W︸ ︷︷ ︸

original part

+ B2λ
−2 + B1λ

−1︸ ︷︷ ︸
deformation part

, (57)

where

W = ( − 1
4Qxx + 1

4 [Q+, [Q−,Q+]] − 1
4 [Q−, [Q−,Q+]]

)
+
[

1
4

(
Q+

x + Q−
x

)
+ c(Q+ + Q−),Q

]
with ∇H̃ = ∇H + ∇H1,∇H ∈ �g+ and ∇H ∈ �g−. Then the modified AKS equation for
nonholonomic deformation is

μ̇ =
[

d

dx
+ μ,∇H

]
+

[
d

dx
+ μ,∇H1

]
, where μ = Aλ + Q, (58)

in which the second part of the rhs of equation (58) is the deformation part. Now compute the
second expression [ d

dx
+ μ,∇H1]; we obtain three additional equations:

λ−2 : B2x + [Q,B2] = 0, (59)

λ−1 : B1x + [A,B2] + [Q,B1] = 0, (60)

λ0 : Qt = [A,B1]. (61)

Let us choose

B1 = 1

2

(−iw iwx

0 iw

)
, B2 = 1

2

(
wx/2

∫ x
uwx dx ′

w −wx/2

)
. (62)

The first two equations yield

wxx

2
+ uw +

∫ x

uwx dx ′ = 0, (63)

14
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which after differentiation w.r.t. x yields

wxxx + 4uwx + 2uxw = 0.

Hence, we recover the known constraint equation. Equating the λ0 power term yields

ut = −wx. (64)

This is the contribution coming from the deformation part of ∇H̃ . If take full ∇H̃ into account,
we obtain the KdV6 equation.

Proposition 5.3. The KdV6 equation is a nonholonomic deformation of the Hamiltonian flow
μ̇ = [μ,∇H̃ ] + (∇H̃ )x where ∇H̃ is given by (57), μ = λA + Q and matrices Q and Bi are
given in (54) and (62) respectively.

Thus, we give an alternative derivation of the KdV6 equation using the loop algebra
technique.

5.4. Nonholonomic deformation of the coupled complex KdV equation

We come to our last section; here we apply the same technique to construct the nonholonomic
deformation of the coupled complex KdV equation. Let us assume that Q and B1 are given as
before and B2 is defined as

B2 =
(

wx/2
∫ x

q†wx dx ′∫ x
qw dx ′ −wx/2

)
.

Equating (59) and (60), we obtain two constraint equations of w

wxx + 2
∫ x

q†wx dx ′ + 2q†w = 0, (65)

wxx + 2q

∫ x

q†wx dx ′ + 2q†
∫ x

qwx = 0, (66)

respectively. One must note that in this complex case, we have two different constraint
equations which reduce to a single equation wxxx + 4uwx + 2uxw = 0 for q = 1 and q† = u.
Hence, equations (65) and (66) can be considered as a natural generalization of the stabilizer
equation for a complex setting. Using the Adler–Kostant–Symes equation, we obtain the
nonholonomic complex coupled KdV equation

qt = qxxx + 6qx |q|2 − wx (67)

q
†
t = q†

xxx + 6q†
x |q|2 − wx, (68)

where w satisfies (65) and (66). Let us state our result in the following form.

Proposition 5.4. The nonholonomic deformation of the Hamiltonian flow corresponding to
the Hamiltonian function H(L) = − 1

2 tr(L2λ−2) and the initial condition ∇H(0) generates
the system of the nonholonomic coupled KdV equation having the Lax representation

μ̇ = [μ,L] + Lx,
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where

L = ∇H = Aλ3 + Qλ2 +
( i

2
Q+

x − i

2
Q−

x − i

2
[Q−,Q+]

)
λ

+

(
−1

4
Qxx +

1

4
[Q+, [Q−,Q+]] − 1

4
[Q−, [Q−,Q+]]

)
+

[
1

4

(
Q+

x + Q−
x

)
+ c(Q+ + Q−),Q

]
+ B2λ

−2 + B1λ
−1,

where B2 and B1 are given by

B1 = 1

2

(
−iw iwx

0 iw

)
, B2 = 1

2

(
wx/2 i

∫ x
q†wx dx ′∫ x

qwx dx ′ −wx/2

)
.

Thus, we give a derivation of another nonholonomic deformation of the coupled KdV-type
equation.

6. Outlook

The present work focused on the construction of the nonholonomic deformation of several
integrable systems. We have shown in this paper that the KdV6 equation has many equivalent
representations. Starting from the coadjoint action of the extended Virasoro algebra, we
derived explicit representation of the nonholonomic deformation of the Ito system, and using
the loop algebra method we derived the nonholonomic deformation of the coupled complex
KdV equations. In this way, we have discovered several new integrable partial differential
equations belonging to the KdV family and this tells us that the domain of integrability still
possesses hidden treasures. Following Kupershmidt, we have constructed an infinite number
of conserved quantities of the Ito6 system. We have also shown that the Adler–Kostant–Symes
scheme provides a geometrical method for constructing the nonholonomic deformation of the
coupled complex KdV equation.

This work opens up various generalizations of nonholonomic deformed integrable
systems. Extension of the construction and integrability properties of the nonholonomic
deformation of the super KdV-type systems is under investigation. It would be a really
challenging problem to construct the (2 + 1)-dimensional nonholonomic deformed systems.
The Adler–Kostant–Symes scheme works elegantly in (1 + 1)-dimensional integrable systems
but there is no unified approach to (2 + 1)-dimensional systems; moreover, most of these
systems are not bi-Hamiltonian in nature. It would be interesting to study the properties of the
Ito6 equation associated with the Schrödinger spectral problem as suggested in [5].
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